Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii.
نویسندگان
چکیده
MicroRNAs (miRNAs) are 20-24 nt non-coding RNAs that play important regulatory roles in a broad range of eukaryotes by pairing with mRNAs to direct post-transcriptional repression. The mechanistic details of miRNA-mediated post-transcriptional regulation have been well documented in multicellular model organisms. However, this process remains poorly studied in algae such as Chlamydomonas reinhardtii, and specific features of miRNA biogenesis, target mRNA recognition and subsequent silencing are not well understood. In this study, we report on the characterization of a Chlamydomonas miRNA, cre-miR1174.2, which is processed from a near-perfect hairpin RNA. Using Gaussia luciferase (gluc) reporter genes, we have demonstrated that cre-miR1174.2 is functional in Chlamydomonas and capable of triggering site-specific cleavage at the center of a perfectly complementary target sequence. A mismatch tolerance test assay, based on pools of transgenic strains, revealed that target hybridization to nucleotides of the seed region, at the 5' end of an miRNA, was sufficient to induce moderate repression of expression. In contrast, pairing to the 3' region of the miRNA was not critical for silencing. Our results suggest that the base-pairing requirements for small RNA-mediated repression in C. reinhardtii are more similar to those of metazoans compared with the extensive complementarity that is typical of land plants. Individual Chlamydomonas miRNAs may potentially modulate the expression of numerous endogenous targets as a result of these relaxed base-pairing requirements.
منابع مشابه
Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii.
The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of crite...
متن کاملA complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii.
Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show t...
متن کاملmRNA destabilisation through CDS-targeting is the primary role of endogenous miRNA in the green alga Chlamydomonas
MicroRNAs regulate gene expression as part of the RNA-induced silencing complex, where the sequence identity of the miRNA provides the specificity to the target messenger RNA, and the result is target repression. The mode of repression can be through target cleavage, RNA destabilization and/or decreased translational efficiency. Here, we provide a comprehensive global analysis of the evolutiona...
متن کاملSmall interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii.
Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characteriz...
متن کاملSmall Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in <i>Chlamydomonas reinhardtii</i>
Small RNAs (~20-30 nt in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of small RNA (sRNA) function such as the mechanism(s) of translation repression at postinitiation steps remain poorly characterized. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2013